Marine Life / The Naming of Life: Marine Taxonomy »
The history of marine biology may have begun as early as 1200 BC when the Phoenicians began ocean voyages using celestial navigation. References to the sea and its mysteries abound in Greek mythology, particularly the Homeric poems "The Iliad" and "The Odyssey". However, these two sources of ancient history mostly refer to the sea as a means of transportation and food source.
It wasn't until the writings of Aristotle
from 384-322 BC that specific references to marine life were recorded. Aristotle identified a variety of species including crustaceans, echinoderms, mollusks, and fish. He also recognized that cetaceans are mammals, and that marine vertebrates are either oviparous (producing eggs that hatch outside the body) or viviparous (producing eggs that hatch within the body). Because he is the first to record observations on marine life, Aristotle is often referred to as the father of marine biology.
The Early Expeditions
The modern day study of marine biology began with the exploration by Captain James Cook
The voyages of the HMS Beagle were followed by a 3-year voyage by the British ship HMS Challenger
The Challenger was well equipped to explore deeper than previous expeditions with laboratories aboard stocked with tools and materials, microscopes, chemistry supplies, trawls and dredges, thermometers, devices to collect specimens from the deep sea, and miles of rope and hemp used to reach the ocean depths. The end product of theChallenger's voyage was almost 30,000 pages of oceanographic information compiled by a number of scientists from a wide range of disciplines. The "Report of the Scientific Results of the Exploring Voyage of H.M.S. Challenger during the years 1873-76" reported, in addition to the fact that life does exist below 550 m/1,800 feet, findings such as:- 4,717 new species;
- The first systematic plot of currents and temperatures in the ocean;
- A map of bottom deposits much of which has remained current to the present;
- An outline of the main contours of the ocean basins; and
- The discovery of the mid-Atlantic Ridge
.
The report is an important work still used by scientists today. In addition to the report, Sir Thomson also wrote a book about the voyage in 1877 titled "The Voyage of the Challenger." He also wrote one of the early marine biology textbooks "The Depths of the Sea" in 1877.
The Institutions
These expeditions were soon followed by marine laboratories established to study marine life. The oldest marine station in the world, Station Biologique de Roscoff was established in Concarneau, France founded by the College of France in 1859. Concarneau is located on the northwest coast of France. The station was originally established for the cultivation of marine species, such as Dover sole, because of its location near marine estuaries with a variety of marine life. Today, research is conducted on molecular biology, biochemistry, and environmental studies.
In 1871, Spencer Fullerton Baird
, the first director of the US Commission of Fish and Fisheries (now known as the National Marine Fisheries Service
), began a collection station in Woods Hole, Massachusetts because of the abundant marine life there and to investigate declining fish stocks. This laboratory still exists now known as the Northeast Fisheries Science Center
, and is the oldest fisheries research facility in the world. Also at Woods Hole, the Marine Biological Laboratory (MBL)
was established in 1888 by Alpheus Hyatt, a student of Harvard naturalist Louis Agassiz who had established the first seaside school of natural history on an island near Woods Hole. MBL was designed as a summer program for the study of the biology of marine life for the purpose of basic research and education. The Woods Hole Oceanographic Institute
was created in 1930 in response to the National Academy of Science's
call for "the share of the United States of America in a worldwide program of oceanographic research" and was funded by a $3 million grant by the Rockefeller Foundation.
An independent biological laboratory was established in San Diego in 1903 by University of California professor Dr. William E. Ritter, which became part of the University of California in 1912 and was named the Scripps Institution of Oceanography
after its benefactors. Scripps has since become one of the world's leading institutions offering a multi-disciplinary study of oceanography.
Exploration of the Deep Sea
Technology brought the study of marine biology to new heights during the years following the HMS Challenger expedition. In 1934 William Beebe
In 1960, a descent was made to 10,916 m/35,813 ft in the Challenger Deep
of the Marianna trench—the deepest known point in the oceans, 10,924 m/35,838 ft deep at its maximum, near 11° 22'N 142° 36'E—about 200 miles southwest of Guam. The dive was made in the bathyscape Trieste
built by Auguste Piccard, his son Swiss explorer Jean Ernest-Jean Piccard and U.S. Navy Lieutenant Don Walsh. The descent took almost five hours and the two men spent barely twenty minutes on the ocean floor before undertaking the 3 hour 15 minute ascent.
The Trieste's first dive was made in 1953. In the years following, the bathyscape was used for a number of oceanographic research projects, including biological observation, and in 1957 she was chartered and later purchased by the U.S. Navy. The Navy continued to use the bathyscape for oceanographic research off the coast of San Diego, and later used the Trieste for a submarine recovery mission off the U.S. east coast. The bathyscape was retired following the U.S. Navy's commission of the Trieste II The Scientists
Rachel Carson (1907-1964) was a scientist and writer who brought the wonders of the sea to people with her lyrical writings and observations about the sea. Although she was a biologist for the US Fish and Wildlife Service, she devoted her spare time to translating science into writings that would infect the reader with her sense of wonder and respect for nature. She published an article in Atlantic Monthlyin 1937 titled "Undersea" which was followed by a book in 1941 titled "Under the Sea-Wind."These publications described the sea and the life within it from a scientist's point of view, but in the words of a naturalist. In 1951, she published "The Sea Around Us" a prize-winning bestseller on the history of the sea. The success of this book allowed her to resign from federal service and write full-time. Shortly after, her focus turned to the negative impact of pesticides, a cause to which she remained devoted to by fighting to raise public awareness until her death in 1964.
Inspired by the work of William Beebe, Dr. Sylvia Earle
Following her experience aboard the underwater habitat, Earle developed an interest in deep sea exploration, and in 1979 she broke the record for deep diving at 381 m/1,250 ft below the surface in a special suit called the Jim suit
designed to withstand the pressure. Her record has not been broken. Earle decided to test the Jim suit as part of her research on a book published by National Geographic "Exploring the Deep Frontier", and out of her frustration that scuba diving techniques only scratched the surface of the ocean. Following this adventure, Earle started two companies that manufacture deep sea exploration vehicles. The continued advancements in the the technology of these vehicles has helped open up areas in the deep sea previously unexplored. During the 1990s, Earle served as Chief Scientist for the National Oceanic and Atmospheric Administration (NOAA)
. She is currently an Explorer-in-Residence with National Geographic
, and, in addition to her research, remains committed to raising awareness on marine environmental issues.
Dr. Robert Ballard (1942-), also a deep-sea explorer, may be best known for finding the Titanic using technologies he helped to develop, including the Argo/Jason remotely operated vehicles and the technology that transmits video images from the deep sea. His earlier deep sea explorations led to the first discovery of hydrothermal vents during an exploration in a manned submersible of the Mid-Ocean Ridge. Ballard founded the Woods Hole Oceanographic Institution's Deep Submergence Laboratory The Explorers
The advent of scuba diving introduced other pioneers to the study of marine biology.Jacques Cousteau
Cousteau's Austrian counterpart, Dr. Hans Hass The Future
Today, the possibilities for ocean exploration are nearly infinite. In addition to scuba diving, rebreathers, fast computers, remotely-operated vehicles (ROVs), deep sea submersibles, reinforced diving suits, and satellites, other technologies are also being developed. But interdisciplinary research is needed to continue building our understanding of the ocean, and what needs to be done to protect it. In spite of ongoing technological advances, it is estimated that only 5% of the oceans have been explored. Surprisingly, we know more about the moon than we do the ocean. This needs to change if we are to ensure the longevity of the life in the seas—and they cover 71% of the earth's surface. Unlike the moon, they are our backyard. Without a detailed collective understanding of the ramifications of pollution, overfishing, coastal development, as well as the long-term sustainability of ocean oxygen production and carbon dioxide and monoxide absorption, we face great risks to environmental and human health. We need this research so that we can act on potential problems—not react to them when it is already too late.
Fortunately, thanks to the work of past and present ocean explorers, the public is increasingly aware of these risks which encourage public agencies to take action and promote research. The efforts of public agencies using a multi-disciplinary approach, together with the efforts provided by numerous private marine conservation organizations that work on issues such as advocacy, education, and research, will help drive the momentum needed to face the challenges of preserving the ocean.
Tidak ada komentar:
Posting Komentar